학술논문

Chronology of our Galaxy from Gaia Colour-Magnitude Diagram-fitting (ChronoGal). I. The formation and evolution of the thin disk from the Gaia Catalogue of Nearby Stars
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
The current major challenge to reconstruct the chronology of the Milky Way (MW) is the difficulty to derive precise stellar ages. CMD-fitting offers an alternative to individual age determinations to derive the star formation history (SFH). We present CMDft.Gaia and use it to analyse the CMD of the Gaia Catalogue of Nearby Stars (GCNS), which contains a census of the stars within 100 pc of the Sun. The result is an unprecedented detailed view of the evolution of the MW disk. The bulk of star formation started 11-10.5 Gyr ago at [Fe/H]~solar and continued with a slightly decreasing metallicity trend until 6 Gyr ago. Between 6-4 Gyr ago, a break in the age-metallicity distribution is observed, with 3 stellar populations with distinct metallicities (sub-solar, solar, and super-solar), possibly indicating some dramatic event in the Galaxy. Star formation resumed 4 Gyr ago with a bursty behaviour, metallicity near solar and higher average SFR. The derived metallicity distribution closely matches precise spectroscopic data, which also show stellar populations deviating from solar metallicity. Interestingly, our results reveal the presence of intermediate-age populations with both a metallicity typical of the thick disk and supersolar metallicity. Our many tests indicate that, with high precision Gaia photometric and distance data, CMDft.Gaia can achieve a precision ~10% and an accuracy better than 6% in the dating of even old stellar populations. The comparison with independent spectroscopic data shows that metallicity distributions are determined with high precision, without imposing a-priory metallicity information. This opens the door to obtaining detailed and robust information on the evolution of the stellar populations of the MW over cosmic time. As an example we provide an unprecedented detailed view of the age and metallicity distributions of the stars within 100 pc of the Sun.
Comment: 35 pages, 30 figures; to be published in A&A; revised version after minor referee comments