학술논문

Can machine learning predict citizen-reported angler behavior?
Document Type
Working Paper
Source
Subject
Physics - Physics and Society
Computer Science - Machine Learning
Quantitative Biology - Quantitative Methods
Language
Abstract
Prediction of angler behaviors, such as catch rates and angler pressure, is essential to maintaining fish populations and ensuring angler satisfaction. Angler behavior can partly be tracked by online platforms and mobile phone applications that provide fishing activities reported by recreational anglers. Moreover, angler behavior is known to be driven by local site attributes. Here, the prediction of citizen-reported angler behavior was investigated by machine-learning methods using auxiliary data on the environment, socioeconomics, fisheries management objectives, and events at a freshwater body. The goal was to determine whether auxiliary data alone could predict the reported behavior. Different spatial and temporal extents and temporal resolutions were considered. Accuracy scores averaged 88% for monthly predictions at single water bodies and 86% for spatial predictions on a day in a specific region across Canada. At other resolutions and scales, the models only achieved low prediction accuracy of around 60%. The study represents a first attempt at predicting angler behavior in time and space at a large scale and establishes a foundation for potential future expansions in various directions.
Comment: 36 pages, 10 figures, 4 tables (including supplementary information)