학술논문

Direct cross-section measurement of the weak r-process 88Sr({\alpha},n)91Zr reaction in {\nu}-driven winds of core collapse supernovae
Document Type
Working Paper
Source
Subject
Nuclear Experiment
Language
Abstract
About half of the heavy elements beyond iron are known to be produced by the rapid neutron capture process, known as r-process. However, the astrophysical site producing the r-process is still uncertain. Chemical abundances observed in several cosmic sites indicate that different mechanisms should be at play. For instance, the abundances around silver measured in a subset of metal-poor stars indicate the presence of a weak r-process. This process may be active in neutrino-driven winds of core collapse supernovae where (${\alpha}$,n) reactions dominate the synthesis of Z ~ 40 elements in the expelled materials. Scarcely measured, the rates of (${\alpha}$,n) reactions are determined from statistical Hauser-Feshbach calculations with ${\alpha}$-optical-model potentials, which are still poorly constrained. The uncertainties of the (${\alpha}$,n) reaction rates therefore make a significant contribution to the uncertainties of the abundances determined from stellar modeling. In this work, the $^{88}$Sr(${\alpha}$,n)$^{91}$Zr reaction which impacts the weak r-process abundances has been probed at astrophysics energy for the first time; directly measuring the total cross sections at astrophysical energies of 8.37 - 13.09 MeV in the center of mass (3.8 - 7.5 GK). Two measurements were performed at ATLAS with the electrically-segmented ionization chamber MUSIC, in inverse kinematics, while following the active target technique. The cross sections of this ${\alpha}$-induced reaction on $^{88}$Sr, located at the shell closure N = 50, have been found to be lower than expected, by a factor of 3, despite recent statistical calculations validated by measurements on neighboring nuclei. This result encourages more experimental investigations of (${\alpha}$,n) reactions, at N = 50 and towards the neutron-rich side, to further test the predictive power and reliability of such calculations.
Comment: 9 pages, 6 conference