학술논문

Enhancing predictive capabilities in fusion burning plasmas through surrogate-based optimization in core transport solvers
Document Type
Working Paper
Source
Subject
Physics - Plasma Physics
Computer Science - Machine Learning
Physics - Computational Physics
Language
Abstract
This work presents the PORTALS framework, which leverages surrogate modeling and optimization techniques to enable the prediction of core plasma profiles and performance with nonlinear gyrokinetic simulations at significantly reduced cost, with no loss of accuracy. The efficiency of PORTALS is benchmarked against standard methods, and its full potential is demonstrated on a unique, simultaneous 5-channel (electron temperature, ion temperature, electron density, impurity density and angular rotation) prediction of steady-state profiles in a DIII-D ITER Similar Shape plasma with GPU-accelerated, nonlinear CGYRO. This paper also provides general guidelines for accurate performance predictions in burning plasmas and the impact of transport modeling in fusion pilot plants studies.