학술논문

Spatio-Temporal Nonlinear Theory in Birefringent Microrings
Document Type
Working Paper
Source
Subject
Physics - Optics
Language
Abstract
Frequency-dependent nonlinear process in microresonators is widely acknowledged, but there is no theory available to calculate the conversion efficiency for each resonance of the ring, except for the phase-matching one. Similarly for azimuth-dependent nonlinear process in birefringent rings, there is a lack of theory to analysis the conversion efficiency for each azimuth of the ring. Consequently, it leads to old-fashioned or ill-considered coupling position and inefficient energy conversion in birefringent microrings. Here, we introduce spatio-temporal coupled-mode equation to describe mode spatial properties in the cavity, compensating for the deficiency of temporal coupled-mode equation in describing sophisticated responses. By this equation, we find that over a wide frequency range, the extremely strong second-harmonic generation can be achieved at different azimuth under different pumps in an X-cut lithium niobate microring, which is important for realizing an efficient entangled quantum light source, for example. This work will provide new ideas and guidelines for design and applications of monolithic birefringent photonic integrated circuits with high efficiency.