학술논문

Euclid preparation. Modelling spectroscopic clustering on mildly nonlinear scales in beyond-$\Lambda$CDM models
Document Type
Working Paper
Author
Euclid CollaborationBose, B.Carrilho, P.Marinucci, M.Moretti, C.Pietroni, M.Carella, E.Piga, L.Wright, B. S.Vernizzi, F.Carbone, C.Casas, S.D'Amico, G.Frusciante, N.Koyama, K.Pace, F.Pourtsidou, A.Baldi, M.de la Bella, L. F.Fiorini, B.Giocoli, C.Lombriser, L.Aghanim, N.Amara, A.Andreon, S.Auricchio, N.Bardelli, S.Bodendorf, C.Bonino, D.Branchini, E.Brescia, M.Brinchmann, J.Camera, S.Capobianco, V.Cardone, V. F.Carretero, J.Castellano, M.Cavuoti, S.Cimatti, A.Congedo, G.Conselice, C. J.Conversi, L.Copin, Y.Costille, A.Courbin, F.Courtois, H. M.Da Silva, A.Degaudenzi, H.Di Giorgio, A. M.Dubath, F.Duncan, C. A. J.Dupac, X.Dusini, S.Farina, M.Farrens, S.Ferriol, S.Fosalba, P.Frailis, M.Franceschi, E.Galeotta, S.Garilli, B.Gillis, B.Grazian, A.Grupp, F.Guzzo, L.Haugan, S. V. H.Hormuth, F.Hornstrup, A.Jahnke, K.Joachimi, B.Keihänen, E.Kermiche, S.Kiessling, A.Kilbinger, M.Kitching, T.Kunz, M.Kurki-Suonio, H.Ligori, S.Lilje, P. B.Lindholm, V.Lloro, I.Maino, D.Maiorano, E.Mansutti, O.Marggraf, O.Markovic, K.Martinet, N.Marulli, F.Massey, R.Medinaceli, E.Meneghetti, M.Meylan, G.Moresco, M.Moscardini, L.Munari, E.Niemi, S. -M.Padilla, C.Paltani, S.Pasian, F.Pedersen, K.Percival, W. J.Pettorino, V.Pires, S.Polenta, G.Poncet, M.Popa, L. A.Pozzetti, L.Raison, F.Renzi, A.Rhodes, J.Riccio, G.Romelli, E.Roncarelli, M.Saglia, R.Sapone, D.Sartoris, B.Schneider, P.Secroun, A.Seidel, G.Seiffert, M.Serrano, S.Sirignano, C.Sirri, G.Stanco, L.Starck, J. -L.Tallada-Crespí, P.Taylor, A. N.Tereno, I.Toledo-Moreo, R.Torradeflot, F.Tutusaus, I.Valentijn, E. A.Valenziano, L.Vassallo, T.Veropalumbo, A.Wang, Y.Weller, J.Zamorani, G.Zoubian, J.Zucca, E.Biviano, A.Bozzo, E.Burigana, C.Colodro-Conde, C.Di Ferdinando, D.Graciá-Carpio, J.Mauri, N.Neissner, C.Sakr, Z.Scottez, V.Tenti, M.Viel, M.Wiesmann, M.Akrami, Y.Allevato, V.Anselmi, S.Ballardini, M.Bernardeau, F.Borgani, S.Bruton, S.Cabanac, R.Cappi, A.Carvalho, C. S.Castignani, G.Castro, T.Cañas-Herrera, G.Chambers, K. C.Cooray, A. R.Coupon, J.Davini, S.de la Torre, S.De Lucia, G.Desprez, G.Di Domizio, S.Dole, H.Díaz-Sánchez, A.Vigo, J. A. EscartinEscoffier, S.Ferreira, P. G.Ferrero, I.Finelli, F.Gabarra, L.Ganga, K.García-Bellido, J.Giacomini, F.Gozaliasl, G.Guinet, D.Hall, A.Joudaki, S.Kajava, J. J. E.Kansal, V.Karagiannis, D.Kirkpatrick, C. C.Legrand, L.Loureiro, A.Macias-Perez, J.Magliocchetti, M.Maoli, R.Martinelli, M.Martins, C. J. A. P.Matthew, S.Maturi, M.Maurin, L.Metcalf, R. B.Migliaccio, M.Monaco, P.Morgante, G.Nadathur, S.Walton, Nicholas A.Patrizii, L.Pezzotta, A.Popa, V.Porciani, C.Potter, D.Pöntinen, M.Reimberg, P.Rocci, P. -F.Sánchez, A. G.Schneider, A.Sefusatti, E.Sereno, M.Silvestri, A.Mancini, A. SpurioSteinwagner, J.Testera, G.Teyssier, R.Toft, S.Tosi, S.Troja, A.Tucci, M.Valiviita, J.Vergani, D.
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Language
Abstract
We investigate the approximations needed to efficiently predict the large-scale clustering of matter and dark matter halos in beyond-$\Lambda$CDM scenarios. We examine the normal branch of the Dvali-Gabadadze-Porrati model, the Hu-Sawicki $f(R)$ model, a slowly evolving dark energy, an interacting dark energy model and massive neutrinos. For each, we test approximations for the perturbative kernel calculations, including the omission of screening terms and the use of perturbative kernels based on the Einstein-de Sitter universe; we explore different infrared-resummation schemes, tracer bias models and a linear treatment of massive neutrinos; we employ two models for redshift space distortions, the Taruya-Nishimishi-Saito prescription and the Effective Field Theory of Large-Scale Structure. This work further provides a preliminary validation of the codes being considered by Euclid for the spectroscopic clustering probe in beyond-$\Lambda$CDM scenarios. We calculate and compare the $\chi^2$ statistic to assess the different modelling choices. This is done by fitting the spectroscopic clustering predictions to measurements from numerical simulations and perturbation theory-based mock data. We compare the behaviour of this statistic in the beyond-$\Lambda$CDM cases, as a function of the maximum scale included in the fit, to the baseline $\Lambda$CDM case. We find that the Einstein-de Sitter approximation without screening is surprisingly accurate for all cases when comparing to the halo clustering monopole and quadrupole obtained from simulations. Our results suggest that the inclusion of multiple redshift bins, higher-order multipoles, higher-order clustering statistics (such as the bispectrum) and photometric probes such as weak lensing, will be essential to extract information on massive neutrinos, modified gravity and dark energy.
Comment: 27 pages, 9 figures, 4 tables, 3 appendices