학술논문

3D atomic structure from a single XFEL pulse
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
X-ray Free Electron Lasers (XFEL) are the most advanced pulsed x-ray sources. Their extraordinary pulse parameters promise unique applications. Indeed, several new methods have been developed at XFEL-s. However, no methods are known, which would allow ab initio atomic level structure determination using only a single XFEL pulse. Here, we present experimental results, demonstrating the determination of the 3D atomic structure from data obtained during a single 25 fs XFEL pulse. Parallel measurement of hundreds of Bragg reflections was done by collecting Kossel line patterns of GaAs and GaP. With these measurements, we reached the ultimate temporal limit of the x-ray structure solution possible today. These measurements open the way for studying non-repeatable fast processes and structural transformations in crystals for example measuring the atomic structure of matter at extremely non-ambient conditions or transient structures formed in irreversible physical, chemical, or biological processes. It would also facilitate time resolved pump-probe structural studies making them significantly shorter than traditional serial crystallography.
Comment: 16 pages of manuscript followed by 15 pages of supplementary information