학술논문
Positronium laser cooling via the $1^3S$-$2^3P$ transition with a broadband laser pulse
Document Type
Working Paper
Author
Glöggler, L. T.; Gusakova, N.; Rienäcker, B.; Camper, A.; Caravita, R.; Huck, S.; Volponi, M.; Wolz, T.; Penasa, L.; Krumins, V.; Gustafsson, F.; Auzins, M.; Bergmann, B.; Burian, P.; Brusa, R. S.; Castelli, F.; Ciuryło, R.; Comparat, D.; Consolati, G.; Doser, M.; Graczykowski, Ł.; Grosbart, M.; Guatieri, F.; Haider, S.; Janik, M. A.; Kasprowicz, G.; Khatri, G.; Kłosowski, Ł.; Kornakov, G.; Lappo, L.; Linek, A.; Malamant, J.; Mariazzi, S.; Petracek, V.; Piwiński, M.; Pospisil, S.; Povolo, L.; Prelz, F.; Rangwala, S. A.; Rauschendorfer, T.; Rawat, B. S.; Rodin, V.; Røhne, O. M.; Sandaker, H.; Smolyanskiy, P.; Sowiński, T.; Tefelski, D.; Vafeiadis, T.; Welsch, C. P.; Zawada, M.; Zielinski, J.; Zurlo, N.
Source
Subject
Language
Abstract
We report on laser cooling of a large fraction of positronium (Ps) in free-flight by strongly saturating the $1^3S$-$2^3P$ transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived $3^3P$ states. The second effect is the one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a 58(9) % increase in the coldest fraction of the Ps ensemble.
Comment: 6 pages, 5 figures
Comment: 6 pages, 5 figures