학술논문

Evidence of weak circumstellar medium interaction in the Type II SN 2023axu
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
We present high-cadence photometric and spectroscopic observations of SN~2023axu, a classical Type II supernova with an absolute $V$-band peak magnitude of $-16.5 \pm 0.1$ mag. SN~2023axu was discovered by the Distance Less Than 40 Mpc (DLT40) survey within 1 day of the last non-detection in the nearby galaxy NGC 2283 at 13.7 Mpc. We modeled the early light curve using a recently updated shock cooling model that includes the effects of line blanketing and found the explosion epoch to be MJD 59971.48 $\pm$ 0.03 and the probable progenitor to be a red supergiant with a radius of 417 $\pm$ 28 $R_\odot$. The shock cooling model cannot match the rise of observed data in the $r$ and $i$ bands and underpredicts the overall UV data which points to possible interaction with circumstellar material. This interpretation is further supported by spectral behavior. We see a ledge feature around 4600 \AA\ in the very early spectra (+1.1 and +1.5 days after the explosion) which can be a sign of circumstellar interaction. The signs of circumstellar material are further bolstered by the presence of absorption features blueward of H$\alpha$ and H$\beta$ at day $>$40 which is also generally attributed to circumstellar interaction. Our analysis shows the need for high-cadence early photometric and spectroscopic data to decipher the mass-loss history of the progenitor.
Comment: 18 pages, 12 figures, to be submitted to the AAS Journals