학술논문

Nuclear Recoil Identification in a Scientific Charge-Coupled Device
Document Type
Working Paper
Source
Subject
Physics - Instrumentation and Detectors
Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Experiment
Nuclear Experiment
Language
Abstract
Charge-coupled devices (CCDs) are a leading technology in direct dark matter searches because of their eV-scale energy threshold and high spatial resolution. The sensitivity of future CCD experiments could be enhanced by distinguishing nuclear recoil signals from electronic recoil backgrounds in the CCD silicon target. We present a technique for event-by-event identification of nuclear recoils based on the spatial correlation between the primary ionization event and the lattice defect left behind by the recoiling atom, later identified as a localized excess of leakage current under thermal stimulation. By irradiating a CCD with an $^{241}$Am$^{9}$Be neutron source, we demonstrate $>93\%$ identification efficiency for nuclear recoils with energies $>150$ keV, where the ionization events were confirmed to be nuclear recoils from topology. The technique remains fully efficient down to 90 keV, decreasing to 50$\%$ at 8 keV, and reaching ($6\pm2$)$\%$ at 1.5--3.5 keV. Irradiation with a $^{24}$Na $\gamma$-ray source shows no evidence of defect generation by electronic recoils, with the fraction of electronic recoils with energies $<85$ keV that are spatially correlated with defects $<0.1$$\%$.
Comment: 9 pages, 7 figures