학술논문

A high sensitivity Cherenkov detector for Prompt Gamma Timing and Time Imaging
Document Type
Working Paper
Source
Sci Rep 13, 3609 (2023)
Subject
Physics - Medical Physics
Physics - Instrumentation and Detectors
Language
Abstract
We recently proposed a new approach for the real-time monitoring of particle therapy treatments with the goal of achieving high sensitivities on the particle range measurement already at limited counting statistics. This method extends the Prompt Gamma (PG) timing technique to obtain the PG vertex distribution from the exclusive measurement of particle Time-Of-Flight (TOF). It was previously shown, through Monte Carlo simulation, that an original data reconstruction algorithm (Prompt Gamma Time Imaging) allows to combine the response of multiple detectors placed around the target. In this work we focus on the experimental feasibility of PGTI in Single Proton Regime (SPR) through the development of a multi-channel, Cherenkov-based PG detector with a targeted time resolution of 235 ps (FWHM): the TOF Imaging ARrAy (TIARA). The PG module that we developed is composed of a small PbF$_{2}$ crystal coupled to a silicon photoMultiplier to provide the time stamp of the PG. This prototype was tested with 63 MeV protons delivered from a cyclotron: a time resolution of 276 ps (FWHM) was obtained, resulting in a proton range sensitivity of 4 mm at 2$\sigma$ with the acquisition of only 600 PGs. A second prototype was also evaluated with 148 MeV protons delivered from a synchro-cyclotron obtaining a time resolution below 167 ps (FWHM) for the gamma detector. Moreover, using two identical PG modules, it was shown that a uniform sensitivity on the PG profiles would be achievable by combining the response of gamma detectors uniformly distributed around the target. This work provides the experimental proof-of-concept for the development of a high sensitivity detector that can be used to monitor particle therapy treatments and potentially act in real-time if the irradiation does not comply to treatment plan.