학술논문

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
Document Type
Working Paper
Author
Aguillard, D. P.Albahri, T.Allspach, D.Anisenkov, A.Badgley, K.Baeßler, S.Bailey, I.Bailey, L.Baranov, V. A.Barlas-Yucel, E.Barrett, T.Barzi, E.Bedeschi, F.Berz, M.Bhattacharya, M.Binney, H. P.Bloom, P.Bono, J.Bottalico, E.Bowcock, T.Braun, S.Bressler, M.Cantatore, G.Carey, R. M.Casey, B. C. K.Cauz, D.Chakraborty, R.Chapelain, A.Chappa, S.Charity, S.Chen, C.Cheng, M.Chislett, R.Chu, Z.Chupp, T. E.Claessens, C.Convery, M. E.Corrodi, S.Cotrozzi, L.Crnkovic, J. D.Dabagov, S.Debevec, P. T.Di Falco, S.Di Sciascio, G.Drendel, B.Driutti, A.Duginov, V. N.Eads, M.Edmonds, A.Esquivel, J.Farooq, M.Fatemi, R.Ferrari, C.Fertl, M.Fienberg, A. T.Fioretti, A.Flay, D.Foster, S. B.Friedsam, H.Froemming, N. S.Gabbanini, C.Gaines, I.Galati, M. D.Ganguly, S.Garcia, A.George, J.Gibbons, L. K.Gioiosa, A.Giovanetti, K. L.Girotti, P.Gohn, W.Goodenough, L.Gorringe, T.Grange, J.Grant, S.Gray, F.Haciomeroglu, S.Halewood-Leagas, T.Hampai, D.Han, F.Hempstead, J.Hertzog, D. W.Hesketh, G.Hess, E.Hibbert, A.Hodge, Z.Hong, K. W.Hong, R.Hu, T.Hu, Y.Iacovacci, M.Incagli, M.Kammel, P.Kargiantoulakis, M.Karuza, M.Kaspar, J.Kawall, D.Kelton, L.Keshavarzi, A.Kessler, D. S.Khaw, K. S.Khechadoorian, Z.Khomutov, N. V.Kiburg, B.Kiburg, M.Kim, O.Kinnaird, N.Kraegeloh, E.Krylov, V. A.Kuchinskiy, N. A.Labe, K. R.LaBounty, J.Lancaster, M.Lee, S.Li, B.Li, D.Li, L.Logashenko, I.Campos, A. LorenteLu, Z.Lucà, A.Lukicov, G.Lusiani, A.Lyon, A. L.MacCoy, B.Madrak, R.Makino, K.Mastroianni, S.Miller, J. P.Miozzi, S.Mitra, B.Morgan, J. P.Morse, W. M.Mott, J.Nath, A.Ng, J. K.Nguyen, H.Oksuzian, Y.Omarov, Z.Osofsky, R.Park, S.Pauletta, G.Piacentino, G. M.Pilato, R. N.Pitts, K. T.Plaster, B.Počanić, D.Pohlman, N.Polly, C. C.Price, J.Quinn, B.Qureshi, M. U. H.Ramachandran, S.Ramberg, E.Reimann, R.Roberts, B. L.Rubin, D. L.Santi, L.Schlesier, C.Schreckenberger, A.Semertzidis, Y. K.Shemyakin, D.Sorbara, M.Stapleton, J.Still, D.Stöckinger, D.Stoughton, C.Stratakis, D.Swanson, H. E.Sweetmore, G.Sweigart, D. A.Syphers, M. J.Tarazona, D. A.Teubner, T.Tewsley-Booth, A. E.Tishchenko, V.Tran, N. H.Turner, W.Valetov, E.Vasilkova, D.Venanzoni, G.Volnykh, V. P.Walton, T.Weisskopf, A.Welty-Rieger, L.Winter, P.Wu, Y.Yu, B.Yucel, M.Zeng, Y.Zhang, C.
Source
Phys. Rev. Lett. 131, 161802 (2023)
Subject
High Energy Physics - Experiment
Language
Abstract
We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from the Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, $\tilde{\omega}'^{}_p$, and of the anomalous precession frequency corrected for beam dynamics effects, $\omega_a$. From the ratio $\omega_a / \tilde{\omega}'^{}_p$, together with precisely determined external parameters, we determine $a_\mu = 116\,592\,057(25) \times 10^{-11}$ (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain $a_\mu\text{(FNAL)} = 116\,592\,055(24) \times 10^{-11}$ (0.20 ppm). The new experimental world average is $a_\mu (\text{Exp}) = 116\,592\,059(22)\times 10^{-11}$ (0.19 ppm), which represents a factor of 2 improvement in precision.
Comment: 8 pages, 3 figures