학술논문

Spectropolarimetry of Type II supernovae (II) Intrinsic supernova polarization and its relations with the photometric/spectroscopic properties
Document Type
Working Paper
Source
A&A 681, A11 (2024)
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
The explosion processes of supernovae (SNe) are imprinted in their explosion geometries. Here, we study the intrinsic polarization of 15 hydrogen-rich core-collapse SNe and explore the relation with the photometric and spectroscopic properties. Our sample shows diverse properties of the continuum polarization. The polarization of most SNe has a low degree at early phases but shows a sudden rise to $\sim 1$ \% degree at certain points during the photospheric phase as well as a slow decline during the tail phase, with a constant polarization angle. The variation in the timing of peak polarisation values implies diversity in the explosion geometry: some SNe have aspherical structures only in their helium cores, while in other SNe these reach out to a significant part of the outer hydrogen envelope with a common axis from the helium core to the hydrogen envelope. Other SNe show high polarization from early phases and a change of the polarization angle around the middle of the photospheric phase. This implies that the ejecta are significantly aspherical to the outermost layer and have multi-directional aspherical structures. Exceptionally, the Type~IIL SN~2017ahn shows low polarization at both the photospheric and tail phases. Our results show that the timing of the polarization rise in Type~IIP SNe is likely correlated with their brightness, velocity and the amount of radioactive Ni produced: brighter SNe with faster ejecta velocity and a larger $^{56}$Ni mass have more extended-aspherical explosion geometries. In particular, there is a clear correlation between the timing of the polarization rise and the explosion energy, that is, the explosion asphericity is proportional to the explosion energy. This implies that the development of a global aspherical structure, e.g., a jet, might be the key to realising an energetic SN in the mechanism of SN explosions.
Comment: 27 pages, 30 figures