학술논문

Super-Tonks-Girardeau Quench in the Extended Bose-Hubbard Model
Document Type
Working Paper
Source
Subject
Condensed Matter - Quantum Gases
Quantum Physics
Language
Abstract
We investigate the effect of a quench from a one-dimensional gas with strong and repulsive local interactions to a strongly attractive one, known as the super-Tonks-Girardeau effect. By incorporating both an optical lattice and non-local interactions (specifically nearest-neighbor), we discover a previously unexplored phenomenon: the disruption of the state during the quench, but within a specific range of interactions. Our study employs the extended Bose-Hubbard model across various system sizes, starting with analytical results for two atoms and progressing to few-body systems using exact diagonalization, DMRG and TDVP methods. Finally, we use a numerical implementation of the local density approximation for a macroscopic number of atoms. Consistently, our findings unveil a region where the initially self-bound structure expands due to the super-Tonks-Girardeau quench. The fast evaporation provides a tool to characterize the phase diagram in state-of-art experiments exploring the physics of the extended Bose-Hubbard model.
Comment: Comments welcome!