학술논문

Multi-point Assessment of the Kinematics of Shocks (MAKOS): A Heliophysics Mission Concept Study
Document Type
Working Paper
Source
Bulletin of the AAS, Vol. 55, Issue 3, Whitepaper #135 (9pp); 2023 July 31
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Solar and Stellar Astrophysics
Physics - Plasma Physics
Physics - Space Physics
Language
Abstract
Collisionless shocks are fundamental processes that are ubiquitous in space plasma physics throughout the Heliosphere and most astrophysical environments. Earth's bow shock and interplanetary shocks at 1 AU offer the most readily accessible opportunities to advance our understanding of the nature of collisionless shocks via fully-instrumented, in situ observations. One major outstanding question pertains to the energy budget of collisionless shocks, particularly how exactly collisionless shocks convert incident kinetic bulk flow energy into thermalization (heating), suprathermal particle acceleration, and a variety of plasma waves, including nonlinear structures. Furthermore, it remains unknown how those energy conversion processes change for different shock orientations (e.g., quasi-parallel vs. quasi-perpendicular) and driving conditions (upstream Alfv\'enic and fast Mach numbers, plasma beta, etc.). Required to address these questions are multipoint observations enabling direct measurement of the necessary plasmas, energetic particles, and electric and magnetic fields and waves, all simultaneously from upstream, downstream, and at the shock transition layer with observatory separations at ion to magnetohydrodynamic (MHD) scales. Such a configuration of spacecraft with specifically-designed instruments has never been available, and this white paper describes a conceptual mission design -- MAKOS -- to address these outstanding questions and advance our knowledge of the nature of collisionless shocks.
Comment: White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 9 pages, 3 figures, 5 tables