학술논문

Softening of a flat phonon mode in the kagome ScV$_6$Sn$_6$
Document Type
Working Paper
Source
Nat. Commun. 14, 6646 (2023)
Subject
Condensed Matter - Strongly Correlated Electrons
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Materials Science
Language
Abstract
The long range electronic modulations recently discovered in the geometrically frustrated kagome lattice have opened new avenues to explore the effect of correlations in materials with topological electron flat bands. The observation of the lattice response to the emergent new phases of matter, a soft phonon mode, has remained elusive and the microscopic origin of charge density waves (CDWs) is still unknown. Here, we show, for the first time, a complete melting of the ScV$_ 6$Sn$_ 6$ (166) kagome lattice. The low energy phonon with propagation vector $\frac{1}{3} \frac{1}{3} \frac{1}{2}$ collapses at 98 K, without the emergence of long-range charge order, which sets in with a propagation vector $\frac{1}{3} \frac{1}{3} \frac{1}{3}$. The CDW is driven (but locks at a different vector) by the softening of an overdamped phonon flat plane at k$_z$=$\pi$. We observe broad phonon anomalies in momentum space, pointing to (1) the existence of approximately flat phonon bands which gain some dispersion due to electron renormalization, and (2) the effects of the momentum dependent electron-phonon interaction in the CDW formation. Ab initio and analytical calculations corroborate the experimental findings to indicate that the weak leading order phonon instability is located at the wave vector $\frac{1}{3} \frac{1}{3} \frac{1}{2}$ of a rather flat collapsed mode. We analytically compute the phonon frequency renormalization from high temperatures to the soft mode, and relate it to a peak in the orbital-resolved susceptibility, obtaining an excellent match with both ab initio and experimental results, and explaining the origin of the approximately flat phonon dispersion. Our data report the first example of the collapse of a softening of a flat phonon plane and promote the 166 compounds of the kagome family as primary candidates to explore correlated flat phonon-topological flat electron physics.
Comment: 10 pages, 4 figures