학술논문

A lensed radio jet at milli-arcsecond resolution II: Constraints on fuzzy dark matter from an extended gravitational arc
Document Type
Working Paper
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - Astrophysics of Galaxies
Language
Abstract
Using a single gravitational lens system observed at $\lesssim5$ milli-arcsecond resolution with very long baseline interferometry (VLBI), we place a lower bound on the mass of the fuzzy dark matter (FDM) particle, ruling out $m_\chi \leq 4.4\times10^{-21}~\mathrm{eV}$ with a 20:1 posterior odds ratio relative to a smooth lens model. We generalize our result to non-scalar and multiple-field models, such as vector FDM, with $m_{\chi,\mathrm{vec}} > 1.4 \times 10^{-21}~\mathrm{eV}$. Due to the extended source structure and high angular resolution of the observation, our analysis is directly sensitive to the presence of granule structures in the main dark matter halo of the lens, which is the most generic prediction of FDM theories. A model based on well-understood physics of ultra-light dark matter fields in a gravitational potential well makes our result robust to a wide range of assumed dark matter fractions and velocity dispersions in the lens galaxy. Our result is competitive with other lower bounds on $m_\chi$ from past analyses, which rely on intermediate modelling of structure formation and/or baryonic effects. Higher resolution observations taken at 10 to 100 GHz could improve our constraints by up to 2 orders of magnitude in the future.
Comment: 5 pages, 2 figures. Accepted in MNRAS Letters