학술논문

Probing enhanced electron-phonon coupling in graphene by infrared resonance Raman spectroscopy
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Materials Science
Language
Abstract
We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at $\mathbf{K}$, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D$^\prime$ peaks with respect to that measured in graphite. Comparing with fully \textit{ab initio} theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.
Comment: 6 pages, 3 figures