학술논문

Evolution of the spin dynamics in the van der Waals system $M_{\text{2}}$P$_{\text{2}}$S$_{\text{6}}$ ($\boldsymbol{M}_{\text{2}}$ = Mn$_{\text{2}}$, MnNi, Ni$_{\text{2}}$) series probed by electron spin resonance spectroscopy
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
In this work we report a detailed ESR spectroscopic study of the single-crystalline samples of the van der Waals compounds $M_{\text{2}}$P$_{\text{2}}$S$_{\text{6}}$ ($M_{\text{2}}$ = Mn$_{\text{2}}$, MnNi, Ni$_{\text{2}}$), performed at an excitation frequency of 9.56 GHz, in a broad range of temperatures above the magnetic order, and at different orientations of the magnetic field with respect to the sample. Analyzing temperature and angular dependences of the resonance field and of the linewidth of the Mn$_2$P$_2$S$_6$ compound we have observed a significant change of the spin dynamics from the dominance of the 3D-like fluctuations close to the magnetic order to a relative increase of the 2D-like spin fluctuations at higher temperatures. Such a behavior, which is opposite to the development of the low-D signatures in the previously studied Cr$_{\text{2}}$Ge$_{\text{2}}$Te$_{\text{6}}$ compound, can be explained by the difference in the type of magnetic order in Mn$_2$P$_2$S$_6$ and Cr$_{\text{2}}$Ge$_{\text{2}}$Te$_{\text{6}}$. On the other hand, MnNiP$_2$S$_6$ compound exhibits angular dependences of the linewidth typical for the system with 3D-like spin correlations in the whole measurement temperature range, however the 2D-like correlations can be seen in the temperature dependences of the resonance field and the linewidth. Ni$_2$P$_2$S$_6$, in turn, does not show any 2D signatures. This suggests that varying the Ni content in (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ one can control the exchange interaction, possibly also in the third dimension.