학술논문

Proposal for a neutrino telescope in South China Sea
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Instrumentation and Methods for Astrophysics
High Energy Physics - Experiment
Language
Abstract
Cosmic rays were first discovered over a century ago, however the origin of their high-energy component remains elusive. Uncovering astrophysical neutrino sources would provide smoking gun evidence for ultrahigh energy cosmic ray production. The IceCube Neutrino Observatory discovered a diffuse astrophysical neutrino flux in 2013 and observed the first compelling evidence for a high-energy neutrino source in 2017. Next-generation telescopes with improved sensitivity are required to resolve the diffuse flux. A detector near the equator will provide a unique viewpoint of the neutrino sky, complementing IceCube and other neutrino telescopes in the Northern Hemisphere. Here we present results from an expedition to the north-eastern region of the South China Sea. A favorable neutrino telescope site was found on an abyssal plain at a depth of $\sim$ 3.5 km. Below 3 km, the sea current speed was measured to be $v_{\mathrm{c}}<$ 10 cm/s, with absorption and scattering lengths for Cherenkov light of $\lambda_{\mathrm{abs} }\simeq$ 27 m and $\lambda_{\mathrm{sca} }\simeq$ 63 m, respectively. Accounting for these measurements, we present the preliminary design and capabilities of a next-generation neutrino telescope, The tRopIcal DEep-sea Neutrino Telescope (TRIDENT). With its advanced photon-detection technologies and size, TRIDENT expects to discover the IceCube steady source candidate NGC 1068 within 2 years of operation. This level of sensitivity will open a new arena for diagnosing the origin of cosmic rays and measuring astronomical neutrino oscillation over fixed baselines.
Comment: 33 pages,16 figures. Correspondence should be addressed to D. L. Xu (donglianxu@sjtu.edu.cn)