학술논문

Formation of robust bound states of interacting microwave photons
Document Type
Working Paper
Author
Morvan, AlexisAndersen, Trond I.Mi, XiaoNeill, CharlesPetukhov, AndreKechedzhi, KostyantynAbanin, DmitryAcharya, RajeevArute, FrankArya, KunalAsfaw, AbrahamAtalaya, JuanBabbush, RyanBacon, DaveBardin, Joseph C.Basso, JoaoBengtsson, AndreasBortoli, GinaBourassa, AlexandreBovaird, JennaBrill, LeonBroughton, MichaelBuckley, Bob B.Buell, David A.Burger, TimBurkett, BrianBushnell, NicholasChen, ZijunChiaro, BenCollins, RobertoConner, PaulCourtney, WilliamCrook, Alexander L.Curtin, BenDebroy, Dripto M.Barba, Alexander Del ToroDemura, SeanDunsworth, AndrewEppens, DanielErickson, CatherineFaoro, LaraFarhi, EdwardFatemi, RezaBurgos, Leslie FloresForati, EbrahimFowler, Austin G.Foxen, BrooksGiang, WilliamGidney, CraigGilboa, DarGiustina, MarissaDau, Alejandro GrajalesGross, Jonathan A.Habegger, SteveHamilton, Michael C.Harrigan, Matthew P.Harrington, Sean D.Hilton, JeremyHoffmann, MarkusHong, SabrinaHuang, TrentHuff, AshleyHuggins, William J.Isakov, Sergei V.Iveland, JustinJeffrey, EvanJiang, ZhangJones, CodyJuhas, PavolKafri, DvirKhattar, TanujKhezri, MostafaKieferova, MarikaKim, SeonKitaev, AlexeiKlimov, Paul V.Klots, Andrey R.Korotkov, Alexander N.Kostritsa, FedorKreikebaum, John MarkLandhuis, DavidLaptev, PavelLau, Kim-MingLaws, LilyLee, JoonhoLee, KennyLester, Brian J.Lill, AlexanderLiu, WayneLocharla, AdityaLucero, ErikMalone, Fionn D.Martin, OrionMcClean, Jarrod R.McEwen, MattCosta, Bernardo MeurerMiao, Kevin C.Mohseni, MasoudMontazeri, ShirinMount, EmilyMruczkiewicz, WojciechNaaman, OferNeeley, MatthewNersisyan, AniNewman, MichaelNguyen, AnthonyNguyen, MurrayNiu, Murphy YuezhenO'Brien, Thomas E.Olenewa, RicardoOpremcak, AlexPotter, RebeccaQuintana, ChrisRubin, Nicholas C.Saei, NegarSank, DanielSankaragomathi, KannanSatzinger, Kevin J.Schurkus, Henry F.Schuster, ChristopherShearn, Michael J.Shorter, AaronShvarts, VladimirSkruzny, JindraSmith, W. ClarkeSterling, GeorgeStrain, DougSu, YuanSzalay, MarcoTorres, AlfredoVidal, GuifreVillalonga, BenjaminHeidweiller, Catherine VollgraffWhite, TheodoreXing, ChengYao, Z. JamieYeh, PingYoo, JuhwanZalcman, AdamZhang, YaxingZhu, NingfengNeven, HartmutBoixo, SergioMegrant, AnthonyKelly, JulianChen, YuSmelyanskiy, VadimAleiner, IgorIoffe, Lev B.Roushan, Pedram
Source
Nature 612, 240-245 (2022)
Subject
Quantum Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Other Condensed Matter
Language
Abstract
Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.
Comment: 7 pages + 15 pages supplements