학술논문

Milliarcsecond astrometry for the Galilean moons using stellar occultations
Document Type
Working Paper
Source
The Astronomical Journal, Volume 163, Number 5, 2022
Subject
Astrophysics - Earth and Planetary Astrophysics
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
A stellar occultation occurs when a Solar System object passes in front of a star for an observer. This technique allows the determination of sizes and shapes of the occulting body with kilometer precision. Also, this technique constrains the occulting body's positions, albedos, densities, etc. In the context of the Galilean moons, these events can provide their best ground-based astrometry, with uncertainties in the order of 1 mas ($\sim$ 3 km at Jupiter's distance during opposition). We organized campaigns and successfully observed a stellar occultation by Io (JI) in 2021, one by Ganymede (JIII) in 2020, and one by Europa (JII) in 2019, with stations in North and South America. Also, we re-analyzed two previously published events, one by Europa in 2016 and another by Ganymede in 2017. Then, we fit the known 3D shape of the occulting satellite and determine its center of figure. That resulted in astrometric positions with uncertainties in the milliarcsecond level. The positions obtained from these stellar occultations can be used together with dynamical models to ensure highly accurate orbits of the Galilean moons. These orbits can help plan future space probes aiming at the Jovian system, such as JUICE by ESA and Europa Clipper by NASA, and allow more efficient planning of flyby maneuvers.
Comment: 19 pages, 25 figures, Accepted on March 14, 2022 for publication in The Astronomical Journal