학술논문

Development of a $^{127}$Xe calibration source for nEXO
Document Type
Working Paper
Author
Lenardo, B. G.Hardy, C. A.Tsang, R. H. M.Ondze, J. C. NzobadilaPiepke, A.Triambak, S.Jamil, A.Adhikari, G.Kharusi, S. AlAngelico, E.Arnquist, I. J.Belov, V.Bernard, E. P.Bhat, A.Bhatta, T.Bolotnikov, A.Breur, P. A.Brodsky, J. P.Brown, E.Brunner, T.Caden, E.Cao, G. F.Cao, L.Chana, B.Charlebois, S. A.Chernyak, D.Chiu, M.Cohen, J. R.Collister, R.Dalmasson, J.Daniels, T.Darroch, L.DeVoe, R.di Vacri, M. L.Ding, Y. Y.Dolinski, M. J.Echevers, J.Eckert, B.Elbeltagi, M.Fabris, L.Fairbank, D.Fairbank, W.Farine, J.Fu, Y. S.Gallina, G.Gautam, P.Giacomini, G.Gillis, W.Gingras, C.Gornea, R.Gratta, G.Harouaka, K.Heffner, M.Hein, E.Hößl, J.House, A.Iverson, A.Jiang, X. S.Karelin, A.Kaufman, L. J.Krücken, R.Kuchenkov, A.Kumar, K. S.Larson, A.Leach, K. G.Leonard, D. S.Li, G.Li, S.Li, Z.Licciardi, C.Lindsay, R.MacLellan, R.Masbou, J.McMichael, K.Peregrina, M. MedinaMong, B.Moore, D. C.Murray, K.Nattress, J.Natzke, C. R.Ngwadla, X. E.Ni, K.Ning, Z.Orrell, J. L.Ortega, G. S.Ostrovskiy, I.Overman, C. T.Perna, A.Franco, T. PintoPocar, A.Pratte, J. F.Priel, N.Raguzin, E.Ramonnye, G. J.Rasiwala, H.Raymond, K.Richardson, G.Richman, M.Ringuette, J.Rowson, P. C.Saldanha, R.Sangiorgio, S.Shang, X.Soma, A. K.Spadoni, F.Stekhanov, V.Sun, X. L.Thibado, S.Tidball, A.Todd, J.Totev, T.Tyuka, O. A.Vachon, F.Veeraraghavan, V.Viel, S.Wamba, K.Wang, Y.Wang, Q.Wei, W.Wen, L. J.Wichoski, U.Wilde, S.Wu, W. H.Yan, W.Yang, L.Zeldovich, O.Zhao, J.Ziegler, T.
Source
Subject
Physics - Instrumentation and Detectors
Nuclear Experiment
Language
Abstract
We study a possible calibration technique for the nEXO experiment using a $^{127}$Xe electron capture source. nEXO is a next-generation search for neutrinoless double beta decay ($0\nu\beta\beta$) that will use a 5-tonne, monolithic liquid xenon time projection chamber (TPC). The xenon, used both as source and detection medium, will be enriched to 90% in $^{136}$Xe. To optimize the event reconstruction and energy resolution, calibrations are needed to map the position- and time-dependent detector response. The 36.3 day half-life of $^{127}$Xe and its small $Q$-value compared to that of $^{136}$Xe $0\nu\beta\beta$ would allow a small activity to be maintained continuously in the detector during normal operations without introducing additional backgrounds, thereby enabling in-situ calibration and monitoring of the detector response. In this work we describe a process for producing the source and preliminary experimental tests. We then use simulations to project the precision with which such a source could calibrate spatial corrections to the light and charge response of the nEXO TPC.
Comment: 24 pages, 16 figures