학술논문

Experiments conducted in the burning plasma regime with inertial fusion implosions
Document Type
Working Paper
Author
Ross, J. S.Ralph, J. E.Zylstra, A. B.Kritcher, A. L.Robey, H. F.Young, C. V.Hurricane, O. A.Callahan, D. A.Baker, K. L.Casey, D. T.Doeppner, T.Divol, L.Hohenberger, M.Pape, S. LePak, A.Patel, P. K.Tommasini, R.Ali, S. J.Amendt, P. A.Atherton, L. J.Bachmann, B.Bailey, D.Benedetti, L. R.Hopkins, L. BerzakBetti, R.Bhandarkar, S. D.Bionta, R. M.Birge, N. W.Bond, E. J.Bradley, D. K.Braun, T.Briggs, T. M.Bruhn, M. W.Celliers, P. M.Chang, B.Chapman, T.Chen, H.Choate, C.Christopherson, A. R.Clark, D. S.Crippen, J. W.Dewald, E. L.Dittrich, T. R.Edwards, M. J.Farmer, W. A.Field, J. E.Fittinghoff, D.Frenje, J.Gaffney, J.Johnson, M. GatuGlenzer, S. H.Grim, G. P.Haan, S.Hahn, K. D.Hall, G. N.Hammel, B. A.Harte, J.Hartouni, E.Heebner, J. E.Hernandez, V. J.Herrmann, H.Herrmann, M. C.Hinkel, D. E.Ho, D. D.Holder, J. P.Hsing, W. W.Huang, H.Humbird, K. D.Izumi, N.Jarrott, L. C.Jeet, J.Jones, O.Kerbel, G. D.Kerr, S. M.Khan, S. F.Kilkenny, J.Kim, Y.Kleinrath, H. GeppertKleinrath, V. GeppertKong, C.Koning, J. M.Kroll, J. J.Landen, O. L.Langer, S.Larson, D.Lemos, N. C.Lindl, J. D.Ma, T.MacDonald, M. J.MacGowan, B. J.Mackinnon, A. J.MacLaren, S. A.MacPhee, A. G.Marinak, M. M.Mariscal, D. A.Marley, E. V.Masse, L.Meaney, K.Meezan, N. B.Michel, P. A.Millot, M.Milovich, J. L.Moody, J. D.Moore, A. S.Morton, J. W.Murphy, T.Newman, K.Di Nicola, J. -M. G.Nikroo, A.Nora, R.Patel, M. V.Pelz, L. J.Peterson, J. L.Ping, Y.Pollock, B. B.Ratledge, M.Rice, N. G.Rinderknecht, H.Rosen, M.Rubery, M. S.Salmonson, J. D.Sater, J.Schiaffino, S.Schlossberg, D. J.Schneider, M. B.Schroeder, C. R.Scott, H. A.Sepke, S. M.Sequoia, K.Sherlock, M. W.Shin, S.Smalyuk, V. A.Spears, B. K.Springer, P. T.Stadermann, M.Stoupin, S.Strozzi, D. J.Suter, L. J.Thomas, C. A.Town, R. P. J.Tubman, E. R.Volegov, P. L.Weber, C. R.Widmann, K.Wild, C.Wilde, C. H.Van Wonterghem, B. M.Woods, D. T.Woodworth, B. N.Yamaguchi, M.Yang, S. T.Zimmerman, G. B.
Source
Subject
Physics - Plasma Physics
High Energy Physics - Experiment
Language
Abstract
An experimental program is currently underway at the National Ignition Facility (NIF) to compress deuterium and tritium (DT) fuel to densities and temperatures sufficient to achieve fusion and energy gain. The primary approach being investigated is indirect drive inertial confinement fusion (ICF), where a high-Z radiation cavity (a hohlraum) is heated by lasers, converting the incident energy into x-ray radiation which in turn drives the DT fuel filled capsule causing it to implode. Previous experiments reported DT fuel gain exceeding unity [O.A. Hurricane et al., Nature 506, 343 (2014)] and then exceeding the kinetic energy of the imploding fuel [S. Le Pape et al., Phys. Rev. Lett. 120, 245003 (2018)]. We report on recent experiments that have achieved record fusion neutron yields on NIF, greater than 100 kJ with momentary fusion powers exceeding 1PW, and have for the first time entered the burning plasma regime where fusion alpha-heating of the fuel exceeds the energy delivered to the fuel via compression. This was accomplished by increasing the size of the high-density carbon (HDC) capsule, increasing energy coupling, while controlling symmetry and implosion design parameters. Two tactics were successful in controlling the radiation flux symmetry and therefore the implosion symmetry: transferring energy between laser cones via plasma waves, and changing the shape of the hohlraum. In conducting these experiments, we controlled for known sources of degradation. Herein we show how these experiments were performed to produce record performance, and demonstrate the data fidelity leading us to conclude that these shots have entered the burning plasma regime.