학술논문

Mechanism of magnetic diode in artificial honeycomb lattice
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
Spin diode is important prerequisite to practical manifestation of spin electronics. Yet, a functioning magnetic diode at room temperature is still illusive. Here, we reveal diode-type phenomena due to magnetic charge mediated conduction in artificial honeycomb geometry, made of concave shape single domain permalloy element. We find that honeycomb lattice defies symmetry by populating vertices with low and high multiplicity magnetic charges, causing asymmetric magnetization, in applied current of opposite polarity. High multiplicity units create highly resistive network, thereby inhibiting magnetic charge dynamics propelled electrical conduction. However, practical realization of this effect requires modest demagnetization factor in constituting element. Concave structure fulfills the condition. Subsequently, magnetic diode behavior emerges across broad thermal range of $T$ = 40K - 300K. The finding is a departure from the prevailing notion of spin-charge interaction as the sole guiding principle behind spintronics. Consequently, a new vista, mediated by magnetic charge interaction, is envisaged for spintronic research
Comment: 4 figures