학술논문

Experimental Inference of Neutral and Impurity Transport in Alcator C-Mod Using High-Resolution X-Ray and Ultra-Violet Spectra
Document Type
Working Paper
Source
Subject
Physics - Plasma Physics
Physics - Atomic Physics
Language
Abstract
We present experimental inferences of cross-field impurity transport coefficients for Alcator C-Mod plasmas using a novel forward model for the entire Ca K-alpha spectrum, including satellite lines within the spectral range, to compare to high-resolution X-ray Imaging Crystal Spectroscopy (XICS). These measurements are complemented by Extreme Ultra-Violet (EUV) spectroscopy that constrains transport closer to the edge. Using new atomic data sets for both XICS and EUV analysis has enabled consideration of line ratios across both spectral ranges and has increased the accuracy of inferred transport coefficients. Inclusion of charge exchange between edge thermal neutrals and impurities is shown to be extremely important in C-Mod pedestals. We obtain D atomic neutral densities from experimental D Ly-alpha measurements at the midplane and compare these to SOLPS-ITER simulations, finding good agreement. Bayesian inferences of impurity transport coefficients are presented for L-, EDA H-, and I-mode discharges, making use of the Aurora package for forward modeling and combining our spectroscopic constraints. Experimentally inferred diffusion profiles are found to match turbulent transport models at midradius within uncertainties, using both quasilinear gyro-fluid TGLF SAT-1 and nonlinear ion-scale gyrokinetic CGYRO simulations. Significant discrepancies in convection are observed in some cases, suggesting difficulties in predictions of flat or hollow impurity profiles.
Comment: 23 pages of main body; 38 pages including appendices. 17 figures. Submitted to Nuclear Fusion