학술논문

Measurement of the Nucleon $F^n_2/F^p_2$ Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment
Document Type
Working Paper
Author
MARATHON CollaborationAbrams, D.Albataineh, H.Aljawrneh, B. S.Alsalmi, S.Aniol, K.Armstrong, W.Arrington, J.Atac, H.Averett, T.Gayoso, C. AyerbeBai, X.Bane, J.Barcus, S.Beck, A.Bellini, V.Bhatt, H.Bhetuwal, D.Biswas, D.Blyth, D.Boeglin, W.Bulumulla, D.Butler, J.Camsonne, A.Carmignotto, M.Castellanos, J.Chen, J. -P.Cohen, E. O.Covrig, S.Craycraft, K.Cruz-Torres, R.Dongwi, B.Duran, B.Dutta, D.Fuchey, E.Gal, C.Gautam, T. N.Gilad, S.Gnanvo, K.Gogami, T.Gomez, J.Gu, C.Habarakada, A.Hague, T.Hansen, J. -O.Hattawy, M.Hauenstein, F.Higinbotham, D. W.Holt, R. J.Hughes, E. W.Hyde, C.Ibrahim, H.Jian, S.Joosten, S.Karki, A.Karki, B.Katramatou, A. T.Keith, C.Keppel, C.Khachatryan, M.Khachatryan, V.Khanal, A.Kievsky, A.King, D.King, P. M.Korover, I.Kulagin, S. A.Kumar, K. S.Kutz, T.Lashley-Colthirst, N.Li, S.Li, W.Liu, H.Liuti, S.Liyanage, N.Markowitz, P.McClellan, R. E.Meekins, D.Beck, S. Mey-TalMeziani, Z. -E.Michaels, R.Mihovilovic, M.Nelyubin, V.Nguyen, D.NuruzzamanNycz, M.Obrecht, R.Olson, M.Owen, V. F.Pace, E.Pandey, B.Pandey, V.Paolone, M.Papadopoulou, A.Park, S.Paul, S.Petratos, G. G.Petti, R.Piasetzky, E.Pomatsalyuk, R.Premathilake, S.Puckett, A. J. R.Punjabi, V.Ransome, R. D.Rashad, M. N. H.Reimer, P. E.Riordan, S.Roche, J.Salme, G.Santiesteban, N.Sawatzky, B.Scopetta, S.Schmidt, A.Schmookler, B.Segal, J.Segarra, E. P.Shahinyan, A.Sirca, S.Sparveris, N.Su, T.Suleiman, R.Szumila-Vance, H.Tadepalli, A. S.Tang, L.Tireman, W.Tortorici, F.Urciuoli, G. M.Wojtsekhowski, B.Wood, S.Ye, Z. H.Ye, Z. Y.Zhang, J.
Source
Subject
High Energy Physics - Experiment
Language
Abstract
The ratio of the nucleon $F_2$ structure functions, $F_2^n/F_2^p$, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from $^3$H and $^3$He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab and used two high resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken scaling variable range $0.19 < x < 0.83$, represent a significant improvement compared to previous SLAC and Jefferson Lab measurements for the ratio. They are compared to recent theoretical calculations and empirical determinations of the $F_2^n/F_2^p$ ratio.