학술논문

Neutrino energy reconstruction from semi-inclusive samples
Document Type
Working Paper
Source
Phys. Rev. C 105, 025502 - Published 23 February 2022
Subject
Nuclear Theory
High Energy Physics - Experiment
High Energy Physics - Phenomenology
Nuclear Experiment
Language
Abstract
We study neutrino-nucleus charged-current reactions on finite nuclei for the situation in which an outgoing muon and a proton are detected in coincidence, i.e., we focus on semi-inclusive cross sections. We limit our attention to one-body current interactions (quasielastic scattering) and assess the impact of different nuclear effects in the determination of the neutrino energy. We identify the regions in phase space where the neutrino energy can be reconstructed relatively well, and study whether the cross section in those regions is significant. Our results indicate that it is possible to filter more than 50% of all events according to the muon and proton kinematics, so that for the DUNE and T2K fluxes the neutrino energy can be determined with an uncertainty of less than 1% and 3%, respectively. Furthermore, we find that the reconstructed neutrino energy does not depend strongly on how one treats the final-state interactions and is not much affected by the description of the initial state. On the other hand, the estimations of the uncertainty on the neutrino energy show important sensitivity to the modeling of the initial state.
Comment: 19 pages, 15 figures