학술논문

The interplay of extinction and synchrony in the dynamics of metapopulation formation
Document Type
Working Paper
Source
Subject
Quantitative Biology - Populations and Evolution
92.10
Language
Abstract
The idea of a metapopulation has become canonical in ecology. Its original mean field form provides the important intuition that migration and extinction interact to determine the dynamics of a population composed of subpopulations. From its conception, it has been evident that the very essence of the metapopulation paradigm centers on the process of local extinction. We note that there are two qualitatively distinct types of extinction, gradual and catastrophic, and explore their impact on the dynamics of metapopulation formation using discrete iterative maps. First, by modifying the classic logistic map with the addition of the Allee effect, we show that catastrophic local extinctions in subpopulations are a pre-requisite of metapopulation formation. When subpopulations experience gradual extinction, increased migration rates force synchrony and drive the metapopulation below the Allee point resulting in migration induced destabilization of the system across parameter space. Second, a sawtooth map (an extension of the Bernoulli bit shift map) is employed to simultaneously explore the increasing and decreasing modes of population behavior. We conclude with four generalizations. 1. At low migration rates, a metapopulation may go extinct faster than completely unconnected subpopulations. 2. There exists a gradient between stable metapopulation formation and population synchrony, with critical transitions from no metapopulation to metapopulation to synchronization, the latter frequently inducing metapopulation extinction. 3. Synchronization patterns emerge through time, resulting in synchrony groups and chimeric populations existing simultaneously. 4. There are two distinct mechanisms of synchronization: i. extinction and rescue and, ii.) stretch reversals in a modification of the classic chaotic stretching and folding.
Comment: 35 pages, 21 figures