학술논문

Neutron Induced Fission Fragment Angular Distributions, Anisotropy, and Linear Momentum Transfer Measured with the NIFFTE Fission Time Projection Chamber
Document Type
Working Paper
Source
Phys. Rev. C 102, 014605 (2020)
Subject
Nuclear Experiment
Language
Abstract
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has performed measurements with a fission time projection chamber (fissionTPC) to study the fission process by reconstructing full three-dimensional tracks of fission fragments and other ionizing radiation. The amount of linear momentum imparted to the fissioning nucleus by the incident neutron can be inferred by measuring the opening angle between the fission fragments. Using this measured linear momentum, fission fragment angular distributions can be converted to the center-of-mass frame for anisotropy measurements. Angular anisotropy is an important experimental observable for understanding the quantum mechanical state of the fissioning nucleus and vital to determining detection efficiency for cross section measurements. Neutron linear momentum transfer to fissioning $^{235}$U, $^{238}$U, and $^{239}$Pu and fission fragment angular anisotropy of $^{235}$U and $^{238}$U as a function of neutron energies in the range 130 keV--250 MeV are presented.