학술논문

Detection and timing of gamma-ray pulsations from the $707$ Hz pulsar J0952$-$0607
Document Type
Working Paper
Source
The Astrophysical Journal, Volume 883, Issue 1, article id. 42, 17 pp. (2019)
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
The Low-Frequency Array radio telescope discovered the $707$ Hz binary millisecond pulsar (MSP) J0952$-$0607 in a targeted radio pulsation search of an unidentified $\textit{Fermi}$ gamma-ray source. This source shows a weak energy flux of $F_\gamma = 2.6 \times 10^{-12}\,\text{erg}\,\text{cm}^{-2}\,\text{s}^{-1}$ in the energy range between $100\,\text{MeV}$ and $100\,\text{GeV}$. Here we report the detection of pulsed gamma-ray emission from PSR$\,$J0952$-$0607 in a very sensitive gamma-ray pulsation search. The pulsar's rotational, binary, and astrometric properties are measured over seven years of $\textit{Fermi}$-Large Area Telescope data. For this we take into account the uncertainty on the shape of the gamma-ray pulse profile. We present an updated radio-timing solution now spanning more than two years and show results from optical modeling of the black-widow-type companion based on new multi-band photometric data taken with HiPERCAM on the Gran Telescopio Canarias on La Palma and ULTRACAM on the New Technology Telescope at ESO La Silla. PSR$\,$J0952$-$0607 is now the fastest-spinning pulsar for which the intrinsic spin-down rate has been reliably constrained ($\dot{P}_\text{int} \lesssim 4.6 \times 10^{-21}\,\text{s}\,\text{s}^{-1}$). The inferred surface magnetic field strength of $B_\text{surf} \lesssim 8.2 \times 10^{7}\,\text{G}$ is among the ten lowest of all known pulsars. This discovery is another example of an extremely fast spinning black-widow pulsar hiding within an unidentified $\textit{Fermi} gamma-ray source. In the future such systems might help to pin down the maximum spin frequency and the minimum surface magnetic field strength of MSPs.
Comment: 23 pages, 8 figures