학술논문

Super Bound States in the Continuum on Photonic Flatbands: Concept, Experimental Realization, and Optical Trapping Demonstration
Document Type
Working Paper
Source
Subject
Physics - Optics
Language
Abstract
In this work, we theoretically propose and experimentally demonstrate the formation of a super bound state in a continuum (BIC) on a photonic crystal flat band. This unique state simultaneously exhibits an enhanced quality factor and near-zero group velocity across an extended region of the Brillouin zone. It is achieved at the topological transition when a symmetry-protected BIC pinned at $k=0$ merges with two Friedrich-Wintgen quasi-BICs, which arise from destructive interference between lossy photonic modes of opposite symmetries. As a proof-of-concept, we employ the super flat BIC to demonstrate three-dimensional optical trapping of individual particles. Our findings present a novel approach to engineering both the real and imaginary components of photonic states on a subwavelength scale for innovative optoelectronic devices.