학술논문

Polarized Proton Beams from Laser-induced Plasmas
Document Type
Working Paper
Source
High Pow Laser Sci Eng 7 (2019) e16
Subject
Physics - Plasma Physics
Physics - Accelerator Physics
Language
Abstract
We report on the concept of an innovative source to produce polarized proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven plasma accelerator. Spin effects have been implemented into the PIC simulation code VLPL to make theoretical predictions about the behavior of proton spins in laser-induced plasmas. Simulations of spin-polarized targets show that the polarization is conserved during the acceleration process. For the experimental realization, a polarized HCl gas-jet target is under construction using the fundamental wavelength of a Nd:YAG laser system to align the HCl bonds and simultaneously circular polarized light of the fifth harmonic to photo-dissociate, yielding nuclear polarized H atoms. Subsequently, their degree of polarization is measured with a Lamb-shift polarimeter. The final experiments, aiming at the first observation of a polarized particle beam from laser-generated plasmas, will be carried out at the 10 PW laser system SULF at SIOM/Shanghai.
Comment: 7 pages, 7 figures