학술논문

Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay
Document Type
Working Paper
Author
nEXO CollaborationAlbert, J. B.Anton, G.Arnquist, I. J.Badhrees, I.Barbeau, P. S.Beck, D.Belov, V.Bourque, F.Brodsky, J. P.Brown, E.Brunner, T.Burenkov, A.Cao, G. F.Cao, L.Cen, W. R.Chambers, C.Charlebois, S. A.Chiu, M.Cleveland, B.Coon, M.Côté, M.Craycraft, A.Cree, W.Dalmasson, J.Daniels, T.Daugherty, S. J.Daughhetee, J.DeVoe, R.Delaquis, S.Der Mesrobian-Kabakian, A.Didberidze, T.Dilling, J.Ding, Y. Y.Dolinski, M. J.Dragone, A.Fabris, L.Fairbank, W.Farine, J.Feyzbakhsh, S.Fontaine, R.Fudenberg, D.Giacomini, G.Gornea, R.Graham, K.Gratta, G.Hansen, E. V.Harris, D.Hasan, M.Heffner, M.Hoppe, E. W.Hößl, J.House, A.Hufschmidt, P.Hughes, M.Ito, Y.Iverson, A.Jamil, A.Jewell, M. J.Jiang, X. S.Johnson, T. N.Johnston, S.Karelin, A.Kaufman, L. J.Killick, R.Koffas, T.Kravitz, S.Krücken, R.Kuchenkov, A.Kumar, K. S.Lan, Y.Leonard, D. S.Li, G.Li, S.Li, Z.Licciardi, C.Lin, Y. H.MacLellan, R.Michel, T.Mong, B.Moore, D. C.Murray, K.Newby, R. J.Ning, Z.Njoya, O.Nolet, F.Odgers, K.Odian, A.Oriunno, M.Orrell, J. L.Ortega, G. S.Ostrovskiy, I.Overman, C. T.Parent, S.Piepke, A.Pocar, A.Pratte, J. -F.Qiu, D.Radeka, V.Raguzin, E.Rao, T.Rescia, S.Retière, F.Robinson, A.Rossignol, T.Rowson, P. C.Roy, N.Saldanha, R.Sangiorgio, S.Schmidt, S.Schneider, J.Schubert, A.Sinclair, D.VIII, K. SkarpaasSoma, A. K.St-Hilaire, G.Stekhanov, V.Stiegler, T.Sun, X. L.Tarka, M.Todd, J.Tolba, T.Tsang, R.Tsang, T.Vachon, F.Veeraraghavan, V.Visser, G.Vogel, P.Vuilleumier, J. -L.Wagenpfeil, M.Wang, Q.Weber, M.Wei, W.Wen, L. J.Wichoski, U.Wrede, G.Wu, S. X.Wu, W. H.Yang, L.Yen, Y. -R.Zeldovich, O.Zettlemoyer, J.Zhang, X.Zhao, J.Zhou, Y.Ziegler, T.
Source
Phys. Rev. C 97, 065503 (2018)
Subject
Nuclear Experiment
Physics - Instrumentation and Detectors
Language
Abstract
The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta ($0\nu\beta\beta$) decay in $^{136}$Xe with a target half-life sensitivity of approximately $10^{28}$ years using $5\times10^3$ kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the $^{136}$Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates.
Comment: v2 as published