학술논문

High-precision mass measurements for the isobaric multiplet mass equation at A = 52
Document Type
Working Paper
Source
Subject
Nuclear Experiment
Language
Abstract
Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been determined to be 374(13) keV and 2922(13) keV, respectively. The $Q$ value for the proton decay from the $19/2^-$ isomer in $^{53}$Co has been determined with an unprecedented precision, $Q_{p} = 1558.8(17)$ keV. The proton separation energies of $^{52}$Co and $^{53}$Ni relevant for the astrophysical rapid proton capture process have been experimentally determined for the first time. \end{abstract}
Comment: 12 pages, 13 figures, submitted to Phys. Rev. C (26.9.2016)