학술논문

Exploring viable vacua of the $Z_3$-symmetric NMSSM
Document Type
Working Paper
Source
JHEP 1704 (2017) 024
Subject
High Energy Physics - Phenomenology
High Energy Physics - Experiment
Language
Abstract
We explore the vacua of the $Z_3$-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) and their stability by going beyond the simplistic paradigm that works with a tree-level neutral scalar potential and adheres to some specific flat directions in the field space. Key effects are demonstrated by first studying the profiles of this potential under various circumstances of physical interest via a semi-analytical approach. The results thereof are compared to the ones obtained from a dedicated package like \veva ~which further incorporates the thermal effects to the potential. Regions of the phenomenological NMSSM (pNMSSM) parameter space that render the desired symmetry breaking (DSB) vacuum absolutely stable, long- or short-lived (in relation to the age of the Universe) under quantum/thermal tunneling are delineated. Regions that result in color and charge breaking (CCB) minima are also presented. It is demonstrated that light singlet scalars along with a light LSP (lightest supersymmetric particle) having an appreciable singlino admixture are compatible with a viable DSB vacuum and are much relevant for the collider experiments.
Comment: 52 pages, 19 figures, 4 tables; matches with published version