학술논문

Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis
Document Type
Working Paper
Author
Heine, M.Typel, S.Wu, M. -R.Adachi, T.Aksyutina, Y.Alcantara, J.Altstadt, S.Alvarez-Pol, H.Ashwood, N.Aumann, T.Avdeichikov, V.Barr, M.Beceiro-Novo, S.Bemmerer, D.Benlliure, J.Bertulani, C. A.Boretzky, K.Borge, M. J. G.Burgunder, G.Caamano, M.Caesar, C.Casarejos, E.Catford, W.Cederkäll, J.Chakraborty, S.Chartier, M.Chulkov, L. V.Cortina-Gil, D.Crespo, R.Pramanik, U. DattaFernandez, P. DiazDillmann, I.Elekes, Z.Enders, J.Ershova, O.Estrade, A.Farinon, F.Fraile, L. M.Freer, M.Freudenberger, M.Fynbo, H. O. U.Galaviz, D.Geissel, H.Gernhäuser, R.Göbel, K.Golubev, P.Diaz, D. GonzalezHagdahl, J.Heftrich, T.Heil, M.Heinz, A.Henriques, A.Holl, M.Ickert, G.Ignatov, A.Jakobsson, B.Johansson, H. T.Jonson, B.Kalantar-Nayestanaki, N.Kanungo, R.Kelic-Heil, A.Knöbel, R.Kröll, T.Krücken, R.Kurcewicz, J.Kurz, N.Labiche, M.Langer, C.Bleis, T. LeLemmon, R.Lepyoshkina, O.Lindberg, S.Machado, J.Marganiec, J.Martínez-Pinedo, G.Maroussov, V.Mostazo, M.Movsesyan, A.Najafi, A.Neff, T.Nilsson, T.Nociforo, C.Panin, V.Paschalis, S.Perea, A.Petri, M.Pietri, S.Plag, R.Prochazka, A.Rahaman, A.Rastrepina, G.Reifarth, R.Ribeiro, G.Ricciardi, M. V.Rigollet, C.Riisager, K.Röder, M.Rossi, D.del Rio, J. SanchezSavran, D.Scheit, H.Simon, H.Sorlin, O.Stoica, V.Streicher, B.Taylor, J. T.Tengblad, O.Terashima, S.Thies, R.Togano, Y.Uberseder, E.Van de Walle, J.Velho, P.Volkov, V.Wagner, A.Wamers, F.Weick, H.Weigand, M.Wheldon, C.Wilson, G.Wimmer, C.Winfield, J. S.Woods, P.Yakorev, D.Zhukov, M. V.Zilges, A.Zuber, K.
Source
Phys. Rev. C 95, 014613 (2017)
Subject
Nuclear Experiment
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
With the R$^{3}$B-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of $^{18}$C at a projectile energy around 425~AMeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of $^{17}$C into the ground state of $^{18}$C. Those data have been used to constrain theoretical calculations for transitions populating excited states in $^{18}$C. This allowed to derive the astrophysical cross section $\sigma^{*}_{\mathrm{n}\gamma}$ accounting for the thermal population of $^{17}$C target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures $T_{9}\leq{}1$~GK. Network simulations with updated neutron-capture rates and hydrodynamics according to the neutrino-driven wind model as well as the neutron-star merger scenario reveal no pronounced influence of neutron capture of $^{17}$C on the production of second- and third-peak elements in contrast to earlier sensitivity studies.