학술논문

Visualization of phase-coherent electron interference in a ballistic graphene Josephson junction
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Superconductivity
Language
Abstract
Interference of standing waves in electromagnetic resonators forms the basis of many technologies, from telecommunications and spectroscopy to detection of gravitational waves. However, unlike the confinement of light waves in vacuum, the interference of electronic waves in solids is complicated by boundary properties of the crystal, notably leading to electron guiding by atomic-scale potentials at the edges. Understanding the microscopic role of boundaries on coherent wave interference is an unresolved question due to the challenge of detecting charge flow with submicron resolution. Here we employ Fraunhofer interferometry to achieve real-space imaging of cavity modes in a graphene Fabry-Perot resonator, embedded between two superconductors to form a Josephson junction. By directly visualizing current flow using Fourier methods, our measurements reveal surprising redistribution of current on and off resonance. These findings provide direct evidence of separate interference conditions for edge and bulk currents and reveal the ballistic nature of guided edge states. Beyond equilibrium, our measurements show strong modulation of the multiple Andreev reflection amplitude on an off resonance, a direct measure of the gate-tunable change of cavity transparency. These results demonstrate that, contrary to the common belief, electron interactions with realistic disordered edges facilitate electron wave interference and ballistic transport.
Comment: Includes Supplementary Information