학술논문

Detecting Topological Currents in Graphene Superlattices
Document Type
Working Paper
Source
Science 346, 448-451 (2014)
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene's two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observe this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several microns away from the nominal current path. Locally, topological currents are comparable in strength to the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by gate voltage can be exploited for information processing based on the valley degrees of freedom.
Comment: 19 pgs, 9 fgs