학술논문

A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR
Document Type
Working Paper
Source
Astrophysical Journal, 794:171, 2014
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of an effective sky area of 25 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.1% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.04/-0.12 (sys) +/- 0.07 (multi), where A_BB = 1 is the fiducial WMAP-9 LCDM value. In this expression, "stat" refers to the statistical uncertainty, "sys" to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and "multi" to the calibration uncertainties that have a multiplicative effect on the measured amplitude A_BB.
Comment: 22 pages, 12 figures. v3 is updated to reflect the erratum published in ApJ 2017 848:73, which changed the rejection of the hypothesis of no B-mode polarization power from gravitational lensing from 97.2% to 97.1%