학술논문

Fermilab experience of post-annealing losses in SRF niobium cavities due to furnace contamination and the ways to its mitigation: a pathway to processing simplification and quality factor improvement
Document Type
Working Paper
Source
Subject
Physics - Accelerator Physics
Language
Abstract
We investigate the effect of high temperature treatments followed by only high-pressure water rinse (HPR) of superconducting radio frequency (SRF) niobium cavities. The objective is to provide a cost effective alternative to the typical cavity processing sequence, by eliminating the material removal step post furnace treatment while preserving or improving the RF performance. The studies have been conducted in the temperature range 800-1000C for different conditions of the starting substrate: large grain and fine grain, electro-polished (EP) and centrifugal barrel polished (CBP) to mirror finish. An interesting effect of the grain size on the performances is found. Cavity results and samples characterization show that furnace contaminants cause poor cavity performance, and a practical solution is found to prevent surface contamination. Extraordinary values of residual resistances ~ 1 nOhm and below are then consistently achieved for the contamination-free cavities. These results lead to a more cost-effective processing and improved RF performance, and, in conjunction with CBP, open a potential pathway to acid-free processing.