학술논문

Symmetry of standing waves generated by a point defect in epitaxial graphene
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
Using scanning tunneling microscopy (STM) and Fourier Transform STM (FT-STM), we have studied a point defect in an epitaxial graphene sample grown on silicon carbide substrate. This analysis allows us to extract the quasiparticle energy dispersion, and to give a first experimental proof of the validity of Fermi liquid theory in graphene for a wide range of energies from -800 meV to +800 meV. We also find evidence of a strong threefold anisotropy in the standing waves generated by the defect. We discuss possible relations between this anisotropy, the chirality of the electrons, and the asymmetry between graphene's two sublattices. All experimental measurements are compared and related to theoretical T-matrix calculations.
Comment: 4 pages, 4 figures