학술논문

On solutions of the Diophantine equation $L_n\pm L_m=p^a$.
Document Type
Journal
Author
Patel, S. C. (6-NITR) AMS Author Profile; Rayaguru, S. G. (6-SOAU-DTS) AMS Author Profile; Tiebekabe, P. (SNG-DAKS-MI) AMS Author Profile; Panda, G. K. (6-NITR) AMS Author Profile; Kakanou, K. R. (SNG-DAKS-MI) AMS Author Profile
Source
Malaya Journal of Matematik (Malaya J. Mat.) (20230101), 11, no.~3, 294-302. ISSN: 2319-3786 (print).eISSN: 2321-5666.
Subject
11 Number theory -- 11D Diophantine equations
  11D61 Exponential equations

11 Number theory -- 11J Diophantine approximation, transcendental number theory
  11J86 Linear forms in logarithms; Baker's method
Language
English
Abstract
The Fibonacci sequence $ \{F_n\}_{n\ge 0} $ is a binary recurrent sequence defined by $ F_0=0$, $F_1=1 $ and $ F_{n+2}=F_{n+1}+F_{n} $ for all $ n\ge 0 $, whereas its companion, the Lucas sequence $ \{L_m\}_{m\ge 0} $ is defined recursively as $ L_0=2 $, $ L_1=1 $, and $ L_{m+2}=L_{m+1}+L_{m} $ for all $ {m\ge 0} $. \par In the paper under review, the authors study the solutions of the Diophantine equations $$ L_n\pm L_m=p^{a}, \tag1 $$ where $ p $ is any odd prime and $ (n,m,a) $ are non-negative integers satisfying $ n\ge m $. In their main results, the authors list all the possible solutions to the Diophantine equations (1) for $ p<10^{3} $. \par To prove their main results, the authors use a clever combination of techniques in Diophantine number theory, the usual properties of the Fibonacci and Lucas sequences, Baker's theory for non-zero lower bounds for linear forms in logarithms of algebraic numbers, and reduction techniques involving the theory of continued fractions. All numerical computations are done with the help of simple computer programs in {\tt SageMath}.

Online Access