학술논문

Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes.
Document Type
Article
Source
Atmospheric Measurement Techniques Discussions. 2014, Vol. 7 Issue 7, p6457-6499. 43p.
Subject
*AEROSOLS
*SEAWATER
*AEROSOL analysis
*CARBON content of water
*FOAM
*ATMOSPHERIC aerosol measurement
*TIME-of-flight mass spectrometry
Language
ISSN
1867-8610
Abstract
Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be underpinned by a physically and chemically accurate representation of the bubble mediated production of nascent SSA particles. Since bubble bursting is sensitive to the physicochemical properties of seawater, any important differences in the SSA production mechanism are projected into SSA composition. Using direct chemical measurements of SSA at the single-particle level, this study presents an inter-comparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic enriched particles and a different size resolved elemental composition, especially in the 0.8-2 µm size range. These particles, when dried, had more spherical morphologies compared to the more cubic structure expected for pure NaCl particles, which can be attributed to the presence of additional organic carbon. In addition to an inter-comparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method utilized in this study on SSA composition was undertaken. In organic-enriched seawater, the continuous operation of the plunging waterfall mechanism resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol composition, indicating that the production mechanism of SSA exerts important controls on both the physical and chemical properties of the resulting aerosol. This study provides insight into the physicochemical differences between each of these bubble-mediated SSA generation mechanisms and serves as a guideline for future laboratory studies of SSA particles. [ABSTRACT FROM AUTHOR]