학술논문

Vaccination with Single Chain Antigen Receptors for Islet-Derived Peptides Presented on I-Ag7 Delays Diabetes in NOD Mice by Inducing Anergy in Self-Reactive T-Cells.
Document Type
Article
Source
PLoS ONE. Jul2013, Vol. 8 Issue 7, p1-17. 17p.
Subject
*ANTIGEN receptors
*ISLANDS of Langerhans
*PEPTIDES
*TREATMENT of diabetes
*ANERGY
*TYPE 1 diabetes
*DIABETES
*LABORATORY mice
*VACCINATION
*PREVENTION
Language
ISSN
1932-6203
Abstract
To develop a vaccination approach for prevention of type 1 diabetes (T1D) that selectively attenuates self-reactive T-cells targeting specific autoantigens, we selected phage-displayed single chain antigen receptor libraries for clones binding to a complex of the NOD classII MHC I-Ag7 and epitopes derived from the islet autoantigen RegII. Libraries were generated from B-cell receptor repertoires of classII-mismatched mice immunized with RegII-pulsed NOD antigen presenting cells or from T-cell receptor repertoires in pancreatic lymph nodes of NOD mice. Both approaches yielded clones recognizing a RegII-derived epitope in the context of I-Ag7, which activated autoreactive CD4+ T-cells. A receptor with different specificity was obtained by converting the BDC2.5 TCR into single chain form. B- but not T-cells from donors vaccinated with the clones transferred protection from diabetes to NOD-SCID recipients if the specificity of the diabetes inducer cell and the single chain receptor were matched. B-cells and antibodies from donors vaccinated with the BDC2.5 single chain receptor induced a state of profound anergy in T-cells of BDC2.5 TCR transgenic NOD recipients while B-cells from donors vaccinated with a single chain receptor specific for I-Ag7 RegII peptide complexes induced only partial non-responsiveness. Vaccination of normal NOD mice with receptors recognizing I-Ag7 RegII peptide complexes or with the BDC2.5 single chain receptor delayed onset of T1D. Thus anti-idiotypic vaccination can be successfully applied to T1D with vaccines either generated from self-reactive T-cell clones or derived from antigen receptor libraries. [ABSTRACT FROM AUTHOR]