학술논문

Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis.
Document Type
Academic Journal
Author
Masilamoni GJ; Emory National Primate Research Center, Atlanta, Georgia 30322 gjeyara@emory.edu.; Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322.; Kelly H; Emory National Primate Research Center, Atlanta, Georgia 30322.; Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322.; Swain AJ; Emory National Primate Research Center, Atlanta, Georgia 30322.; Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322.; Pare JF; Emory National Primate Research Center, Atlanta, Georgia 30322.; Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322.; Villalba RM; Emory National Primate Research Center, Atlanta, Georgia 30322.; Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322.; Smith Y; Emory National Primate Research Center, Atlanta, Georgia 30322.; Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322.; Department of Neurology, Emory University, Atlanta, Georgia 30322.
Source
Publisher: Society for Neuroscience Country of Publication: United States NLM ID: 101647362 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 2373-2822 (Electronic) Linking ISSN: 23732822 NLM ISO Abbreviation: eNeuro Subsets: MEDLINE
Subject
Language
English
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Competing Interests: The authors declare no competing financial interests.
(Copyright © 2024 Masilamoni et al.)