학술논문

Assessment of multiple fecal contamination sources in surface waters using environmental mitochondrial DNA metabarcoding.
Document Type
Academic Journal
Author
Ragot R; INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC, Canada, H7V 1B7. Electronic address: rose.ragot@inrs.ca.; Lessard F; Fondation Rivières, 454 Avenue Laurier E, Montréal, QC, Canada, H2J 1E7. Electronic address: florence.lessard@fondationrivieres.org.; Bélanger A; Fondation Rivières, 454 Avenue Laurier E, Montréal, QC, Canada, H2J 1E7. Electronic address: direction@fondationrivieres.org.; Villemur R; INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC, Canada, H7V 1B7. Electronic address: richard.villemur@inrs.ca.
Source
Publisher: Elsevier Country of Publication: Netherlands NLM ID: 0330500 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-1026 (Electronic) Linking ISSN: 00489697 NLM ISO Abbreviation: Sci Total Environ Subsets: MEDLINE
Subject
Language
English
Abstract
Waterborne diseases are transmitted to humans through the fecal contamination of water, where homeothermic species are the main reservoir. Fecal indicator bacteria (FIB) are often used to determine the occurrence of fecal contamination. However, FIB cannot provide the source of fecal contamination. Furthermore, as fecal inputs and contamination could originate from multiple sources (e.g., human, livestock, wildlife), multiple source tracking markers are required to identify fecal sources. From a previous study, we developed a mitochondrial DNA (mtDNA) metabarcoding approach to assess the presence of multiple homeotherms in four surface waters. Here, we have broadened our approach by sampling 86 surface water samples from the L'Assomption River and Ville-Marie watersheds (Province of Quebec, Canada). Fecal coliform levels were higher than the expected sanitary recommendations for recreational water (> 200 CFU/100 mL) in 73 % samples. The occurrence of mtDNA from human, livestock, domestic animals, wild mammals and wild birds was found in 40-88 % of the samples. Multivariate analyses showed significant covariations between homeothermic taxa and fecal coliforms, enterococci, β-D-glucuronidase, conductivity, the human-specific Bacteroidales Hf183 genetic marker, and the human population, in the watersheds of L'Assomption River (p = 0.001) and Ville-Marie (p = 0.015) (Province of Quebec, Canada). Through the application of Bayes Theorem, it was determined that fecal coliforms co-occurred with the detection of bovine, beaver, robin and chicken mtDNA in 100 % of cases in the L'Assomption River watershed, and human mtDNA co-occurred with fecal coliforms in 93 % and 76 % of cases in L'Assomption River watershed and Ville-Marie sub-catchment, respectively. This study suggests that fecal contamination could be the result of multiple species, among which some wild animals may contribute to fecal inputs in surface waters, resulting in potential risk to human health. This reinforces the necessity of using the mtDNA metabarcoding method to monitor multi-animal species.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)