학술논문

The Mitochondrial Antioxidants MitoE2 and MitoQ10 Increase Mitochondrial Ca2+ Load upon Cell Stimulation by Inhibiting Ca2+ Efflux from the Organelle.
Document Type
Article
Source
Annals of the New York Academy of Sciences. Dec2008, Vol. 1147, p264-274. 11p. 6 Graphs.
Subject
*ANTIOXIDANTS
*ORGANELLES
*MITOCHONDRIA
*VITAMIN E
*THERAPEUTICS
*COENZYMES
*CATIONS
*HOMEOSTASIS
*DEHYDROGENASES
Language
ISSN
0077-8923
Abstract
Mitochondrial reactive oxygen species (ROS) production is recognized as a major pathogenic event in a number of human diseases, and mitochondrial scavenging of ROS appears a promising therapeutic approach. Recently, two mitochondrial antioxidants have been developed; conjugating α-tocopherol and the ubiquinol moiety of coenzyme Q to the lipophilic triphenylphosphonium cation (TPP+), denominated MitoE2 and MitoQ10, respectively. We have investigated the effect of these compounds on mitochondrial Ca2+ homeostasis, which controls processes as diverse as activation of mitochondrial dehydrogenases and pro-apoptotic morphological changes of the organelle. We demonstrate that treatment of HeLa cells with both MitoE2 and MitoQ10 induces (albeit with different efficacy) a major enhancement of the increase in matrix Ca2+ concentration triggered by cell stimulation with the inositol 1,4,5-trisphosphate-generating agonist histamine. The effect is a result of the inhibition of Ca2+ efflux from the organelle and depends on the TPP+ moiety of these compounds. Overall, the data identify an effect independent of their antioxidant activity, that on the one hand may be useful in addressing disorders in which mitochondrial Ca2+ handling is impaired (e.g., mitochondrial diseases) and on the other may favor mitochondrial Ca2+ overload and thus increase cell sensitivity to apoptosis (thus possibly counteracting the benefits of the antioxidant activity). [ABSTRACT FROM AUTHOR]