학술논문

Influence of ion-to-electron temperature ratio on tearing instability and resulting subion-scale turbulence in a low-βe collisionless plasma.
Document Type
Article
Source
Physics of Plasmas. Mar2024, Vol. 31 Issue 3, p1-13. 13p.
Subject
*KELVIN-Helmholtz instability
*COLLISIONLESS plasmas
*TURBULENCE
*LARMOR radius
*PLASMA turbulence
*MAGNETOHYDRODYNAMICS
*PARTICLE acceleration
*EDDIES
*FLUID-structure interaction
Language
ISSN
1070-664X
Abstract
A two-field gyrofluid model including ion finite Larmor radius (FLR) corrections, magnetic fluctuations along the ambient field, and electron inertia is used to study two-dimensional reconnection in a low βe collisionless plasma, in a plane perpendicular to the ambient field. Both moderate and large values of the ion-to-electron temperature ratio τ are considered. The linear growth rate of the tearing instability is computed for various values of τ, confirming the convergence to reduced electron magnetohydrodynamics predictions in the large τ limit. Comparisons with analytical estimates in several limit cases are also presented. The nonlinear dynamics leads to a fully developed turbulent regime that appears to be sensitive to the value of the parameter τ. For τ = 100, strong large-scale velocity shears trigger Kelvin–Helmholtz instability, leading to the propagation of the turbulence through the separatrices, together with the formation of eddies of size of the order of the electron skin depth. In the τ = 1 regime, the vortices are significantly smaller and their accurate description requires that electron FLR effects be taken into account. [ABSTRACT FROM AUTHOR]