학술논문

Exertional heat stroke causes long-term skeletal muscle epigenetic reprogramming, altered gene expression, and impaired satellite cell function in mice.
Document Type
Article
Source
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology. Feb2024, Vol. 326 Issue 2, pR160-R175. 16p.
Subject
*CELL physiology
*SATELLITE cells
*HEAT stroke
*GENE expression
*SKELETAL muscle
*HEAT shock proteins
*MUSCLE weakness
Language
ISSN
0363-6119
Abstract
The effect of exertional heat stroke (EHS) exposure on skeletal muscles is incompletely understood. Muscle weakness is an early symptom of EHS but is not considered a major target of multiorgan injury. Previously, in a preclinical mouse model of EHS, we observed the vulnerability of limb muscles to a second EHS exposure, suggesting hidden processes contributing to declines in muscle resilience. Here, we evaluated the possible molecular origins of EHS-induced declines in muscle resilience. Female C57BL/6 mice [total n = 56; 28/condition, i.e., EHS and exercise control (EXC)] underwent forced wheel running at 37.5°C/40% relative humidity until symptom limitation (unconsciousness). EXC mice exercised identically at room temperature (22-23°C). After 1 mo of recovery, the following were assessed: 1) specific force and caffeine-induced contracture in soleus (SOL) and extensor digitorum longus (EDL) muscles; 2) transcriptome and DNA methylome responses in gastrocnemius (GAST); and 3) primary satellite cell function (proliferation and differentiation). There were no differences in specific force in either SOL or EDL from EXC. Only EHS solei exhibited lower caffeine sensitivity. EHS GAST exhibited higher RNA expression of genes encoding structural proteins of slow fibers, heat shock proteins, and myogenesis. A total of ~2,500 differentially methylated regions of DNA that could potentially affect many cell functions were identified. Primary satellite cells exhibited suppressed proliferation rates but normal differentiation responses. Results demonstrate long-term changes in skeletal muscles 1 mo after EHS that could contribute to declines in muscle resilience. Skeletal muscle may join other, more recognized tissues considered vulnerable to longterm effects of EHS. [ABSTRACT FROM AUTHOR]